Abstract
A new generalized AKNS hierarchy is presented starting from a 4 × 4 matrix spectral problem with four potentials. Its generalized bi-Hamiltonian structure is also investigated by using the trace identity. Moreover, the special coupled nonlinear equation, the coupled KdV equation, the KdV equation, the coupled mKdV equation and the mKdV equation are produced from the generalized AKNS hierarchy. Most importantly, a Darboux transformation for the generalized AKNS hierarchy is established with the aid of the gauge transformation between the corresponding 4 × 4 matrix spectral problem, by which multiple soliton solutions of the generalized AKNS hierarchy are obtained. As a reduction, a Darboux transformation of the mKdV equation and its new analytical positon, negaton and complexiton solutions are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.