Abstract

The Theory of Constraints (TOC) was proposed in the mid-1980s and has significantly impacted productivity improvement in manufacturing systems. Although it is intuitive and easy to understand, its conclusions are mainly derived from deterministic settings or based on mean values. This article generalizes the concept of TOC to stochastic settings through the performance analysis of queueing systems and simulation studies. We show that, in stochastic settings, the conventional TOC may not be optimal, and a throughput bottleneck should be considered in certain types of machines at the planning stage. Incorporating the system variability and improvement costs, the Generalized Process Of OnGoing Improvement (GPOOGI) is developed in this study. It shows that improving a frontend machine in a production line can be more effective than improving the throughput bottleneck. The findings indicate that we should consider the dependence among stations and the cost of improvement options during productivity improvement and should not simply improve the system bottleneck according to the conventional TOC. According to the GPOOGI, the managers of production systems would be able to make optimal decision during the continuous improvement process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.