Abstract
The system mean void fraction model has been successful in the prediction of a variety of transient evaporating and condensing flow phenomena; however, applications of the model have been restricted to physical situations involving complete vaporization or condensation. The major contribution of this paper is the development of a generalization of the existing system mean void fraction model, applicable to the broader class of transient two-phase flow problems involving incomplete vaporization. Present applications of the generalized system mean void fraction model to transient evaporating flows indicate good agreement with experimental void fraction and mass flux response data available in the literature. These data represent a variety of different flow geometries, types of fluids, and a wide range of operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.