Abstract
Suppose that m , k , t are integers with m , k ≥ 1 and 0 ≤ t and A is the k × k matrix with the ( i , j ) -entry ( t + ( j − 1 ) m i − 1 ) . When t = 0 and m = 1, this is the upper triangular Pascal matrix. Here, first we study the properties of this matrix, in particular, we find its determinant and its LDU decomposition and also study its inverse. Then by using this matrix we present a generalization of the Mattson-Solomon transform and a polynomial formulation for its inverse to the case that the sequence length and the characteristic of the base field are not coprime. At the end, we use this generalized Mattson-Solomon transform to present a lower bound on the length of repeated root cyclic codes, which can be seen as a generalization of the BCH bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.