Abstract
A natural generalization of the classical Moore–Penrose inverse is presented. The so-called S-Moore–Penrose inverse of an m × n complex matrix A, denoted by A S † , is defined for any linear subspace S of the matrix vector space C n × m . The S-Moore–Penrose inverse A S † is characterized using either the singular value decomposition or (for the full rank case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.