Abstract

The Multi-Dimensional Scaling (MDS) method is used in statistics to detect hidden interrelations among multidimensional data and it has a wide range of applications. The method’s input is a matrix that describes the similarity/dissimilarity among objects of unknown dimension. The objects are generally reconstructed as points of a lower dimensional space to reveal the geometric configuration of the objects. The original MDS method uses Euclidean distance, for measuring both the distance of the reconstructed points and the bias of the reconstructed distances from the original similarity values. In this paper, these distances are distinguished, and distances other than Euclidean are also used, generalizing the MDS method. Two different distances may be used for the two different purposes. Therefore the instances of the generalized MDS model are denoted as model, where the first distance is the type of distance of the reconstructed points and the second one measures the bias of the reconstructed distances and the similarity values. In the case of and distances mixed-integer programming models are provided. The computational experiences show that the generalized model can catch the key properties of the original configuration, if any exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call