Abstract

In our present paper, we approach the mixed problem with initial and boundary conditions, in the context of thermoelasticity without energy dissipation of bodies with a dipolar structure. Our first result is a reciprocal relation for the mixed problem which is reformulated by including the initial data into the field equations. Then, we deduce a generalization of Gurtin’s variational principle, which covers our generalized theory for bodies with a dipolar structure. It is important to emphasize that both results are obtained in a very general context, namely that of anisotropic and inhomogeneous environments, having a center of symmetry at each point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.