Abstract

The Goldberg-Sachs theorem is generalized for all four-dimensional manifolds endowed with torsion-free connection compatible with the metric, the treatment includes all signatures as well as complex manifolds. It is shown that when the Weyl tensor is algebraically special severe geometric restrictions are imposed. In particular it is demonstrated that the simple self-dual eigenbivectors of the Weyl tensor generate integrable isotropic planes. Another result obtained here is that if the self-dual part of the Weyl tensor vanishes in a Ricci-flat manifold of (2,2) signature the manifold must be Calabi-Yau or symplectic and admits a solution for the source-free Einstein-Maxwell equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.