Abstract

The classical αBB method determines univariate quadratic perturbations that convexify twice continuously differentiable functions. This paper generalizes αBB to additionally consider nondiagonal elements in the perturbation Hessian matrix. These correspond to bilinear terms in the underestimators, where previously all nonlinear terms were separable quadratic terms. An interval extension of Gerschgorin’s circle theorem guarantees convexity of the underestimator. It is shown that underestimation parameters which are optimal, in the sense that the maximal underestimation error is minimized, can be obtained by solving a linear optimization model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call