Abstract

Suppose thatm, n are positive even integers andp is a prime number such thatp-1 is not a divisor ofm. For any non-negative integerN, the classical Kummer’s congruences on Bernoulli numbersB n(n = 1,2,3,...) assert that (1-p m-1)B m/m isp-integral and (1) $$(1 - p^{m - 1} )\frac{{B_m }}{m} \equiv (1 - p^{n - 1} )\frac{{B_n }}{n}(\bmod p^{N + 1} )$$ ifm ≡ n (mod (p-1)p n). In this paper, we shall prove that for any positive integerk relatively prime top and non-negative integers α, β such that α +jk =pβ for some integerj with 0 ≤j ≤p-l.Then for any non-negative integerN, (2) $$\frac{1}{m}\{ B_m (\frac{\alpha }{k}) - p^{m - 1} B_m (\frac{\beta }{k})\} \equiv \frac{1}{n}\{ B_n (\frac{\alpha }{k}) - p^{n - 1} B_n (\frac{\beta }{k})\} (\bmod p^{N + 1} )$$ ifp-1 is not a divisor ofm andm ≡ n (mod (p-1)p n). HereB n(x) (n = 0,1,2,...) are Bernoulli polynomials. This of course contains the Kummer’s congruences. Furthermore, it contains new congruences for Bernoulli polynomials of odd indices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.