Abstract

This paper presents a generalization of Rao's covariance structure. In a general linear regression model, we classify the error covariance structure into several categories and investigate the efficiency of the ordinary least squares estimator (OLSE) relative to the Gauss–Markov estimator (GME). The classification criterion considered here is the rank of the covariance matrix of the difference between the OLSE and the GME. Hence our classification includes Rao's covariance structure. The results are applied to models with special structures: a general multivariate analysis of variance model, a seemingly unrelated regression model, and a serial correlation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.