Abstract
We present a tractable generalization of quantal response equilibrium via non-expected utility preferences. In particular, we introduce concave perturbed utility games in which an individual has strategy-specific utility indices that depend on the outcome of the game and an additively separable preference to randomize. The preference to randomize can be viewed as a reduced form of limited attention. Using concave perturbed utility games, we show how to enrich models based on logit best response that are common from quantal response equilibrium. First, the desire to randomize can depend on opponents’ strategies. Second, we show how to derive a nested logit best response function. Lastly, we present tractable quadratic perturbed utility games that allow complementarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.