Abstract
Abstract We introduce a generalization of the notion of operad that we call a contractad, whose set of operations is indexed by connected graphs and whose composition rules are numbered by contractions of connected subgraphs. We show that many classical operads, such as the operad of commutative algebras, Lie algebras, associative algebras, pre-Lie algebras, the little disks operad, and the operad of moduli spaces of stable curves $\operatorname{\overline{{\mathcal{M}}}}_{0,n+1}$, admit generalizations to contractads. We explain that standard tools like Koszul duality and the machinery of Gröbner bases can be easily generalized to contractads. We verify the Koszul property of the commutative, Lie, associative, and Gerstenhaber contractads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.