Abstract

Let $\mathcal{S}$ be a finite commutative semigroup written additively. An element $e$ of $\mathcal{S}$ is said to be idempotent if $e+e = e$. The Erdős-Burgess constant of the semigroup $\mathcal{S}$ is defined as the smallest positive integer $\ell$ such that any $\mathcal{S}$-valued sequence $T$ of length $\ell$ must contain one or more terms with the sum being an idempotent of $\mathcal{S}$. If the semigroup $\mathcal{S}$ is a finite abelian group, the Erdős-Burgess constant reduces to the well-known Davenport constant in Combinatorial Number Theory. In this paper, we determine the value of the Erdős-Burgess constant for a direct sum of two finite cyclic semigroups in some cases, which generalizes the classical Kruyswijk-Olson Theorem on Davenport constant of finite abelian groups in the setting of commutative semigroups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.