Abstract
We study a generalization of K-contact and (k, μ)-contact manifolds, and show that if such manifolds of dimensions ≥ 5 are conformally flat, then they have constant curvature +1. We also show under certain conditions that such manifolds admitting a non-homothetic closed conformal vector field are isometric to a unit sphere. Finally, we show that such manifolds with parallel Ricci tensor are either Einstein, or of zero $${\xi}$$ -sectional curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.