Abstract

In this work, interval-valued optimization problems are considered. The ordering cone is used to generalize the interval-valued optimization problems on real topological vector spaces. Some definitions and their properties are obtained for intervals, defined via an ordering cone. Gerstewitz's function is used to derive scalarization for the interval-valued optimization problems. Also, two subdifferentials for interval-valued functions are introduced by using subgradients. Some necessary optimality conditions are obtained via subdifferentials and scalarization. An example is given to demonstrate the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.