Abstract

Let R be a ring with identity. Let C be a class of R-modules which is closed under submodules and isomorphic images. Define a submodule C of an R-module M to be a C-submodule of M if C ϵ C. An R-module M is said to be C-finite dimensional if it does not contain an infinite direct sum of non-zero C-submodules of M. Theorem: Let M be a C-finite dimensional R-module. Then there is a uniform bound (the C-dimension of M) on the number of non-zero C-submodules in a direct sum of submodules of M. When C = M R , we recover the definition of dimension in the sense of Goldie. When C is the class of torsion-free modules relative to a kernel functor σ, we derive the formula: dim M = σ-dim M + dim (σ( M)) where for an R-module N, dim N is the dimension of N in the sense of Goldie and σ-dim N is the dimension of N relative to the class of σ-torsion- free modules. A special case gives a new interpretation of rank of a module as defined by Goldie.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.