Abstract

Let R be a prime ring of characteristic different from 2 with Z the center of R and d a nonzero derivation of R. Let k, m, n be fixed positive integers. If ([d(x k ), x k ] n ) m ∈ Z for all x ∈ R, then R satisfies S 4, the standard identity in 4 variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.