Abstract
We report DNA catalysts (deoxyribozymes) that join tyrosine-containing peptides to RNA and DNA in one step and without requiring protecting groups on either the peptide or the nucleic acid. Our previous efforts towards this goal required tethering the peptide to a DNA anchor oligonucleotide. Here, we established direct in vitro selection for deoxyribozymes that use untethered, free peptide substrates. This approach enables imposition of selection pressure via reduced peptide concentration and leads to preparatively useful lower apparent Km values of ∼100 μM peptide. Use of phosphorimidazolide (Imp) rather than triphosphate as the electrophile enables reactivity of either terminus (5' or 3') of both RNA and DNA. Our findings establish a generalizable means of joining unprotected peptide to nucleic acid in one step by using DNA catalysts identified by in vitro selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.