Abstract

Consolidating tasks to a smaller number of electronic control units (ECUs) is an important strategy for optimizing costs and resources in the automotive industry. In our research, we aim to enable ECU consolidation by migrating tasks at runtime between different ECUs, which adds redundancy and fail-safety capabilities to the system. In this paper, we present a setup with a generalistic and modular architecture that allows for integrating and testing different ECU architectures and machine learning (ML) models. As part of a holistic testbed, we introduce a collection of reproducible tasks, as well as a toolchain that controls the dynamic migration of tasks depending on ECU status and load. The migration is aided by the machine learning predictions on the schedulability analysis of possible future task distributions. To demonstrate the capabilities of the setup, we show its integration with FreeRTOS-based ECUs and two ML models—a long short-term memory (LSTM) network and a spiking neural network—along with a collection of tasks to distribute among the ECUs. Our approach shows a promising potential for machine-learning-based schedulability analysis and enables a comparison between different ML models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.