Abstract

The morphology of the human cranium allows for reconstructing important information about the identity of an individual, such as age, ancestry, sex, and health status. The estimation of sex from morphology is a key component of the work of physical anthropologists, and in the last decade, the field has witnessed an increase in the use of novel algorithm-based methodologies to tackle the aforementioned task. Nevertheless, several limitations (e.g., small training/testing sample size, training-test data relatedness, limited population inclusiveness, overfitting) have hampered the application of such methods as a standardised procedure in the field. Here, we propose a population-inclusive protocol for estimating sex from a small set of cranial metric traits (10 measurements) based on a neural network architecture trained to maximise the probability of sex attribution and prevent overfitting. The cross-validation returned an accuracy of 86.7% ± 0.02% and log loss of 0.34 ± 0.03. The protocol developed was tested on data unrelated to that of the training and validation phase and returned an estimated accuracy of 84.3% and log loss of 0.348. The model and the related code to use it are made publicly available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call