Abstract

This paper presents the development of a generalised cutting force model for both end-milling and face-milling operations. The model specifies the interaction between workpiece and multiple cutter flutes by the convolution of cutting-edge geometry function with a train of impulses having the period equivalent to tooth spacing. Meanwhile, the effect of radial and axial depths of cut are represented by the modulation of the cutting-edge geometry function with a rectangular window function. This formulation leads to the development of an expression of end/face-milling forces in explicit terms of material properties, tool geometry, cutting parameters and process configuration. The explicitness of the resulting model provides a unique alternative to other studies in the literature commonly based on numerical integrations. The closed-form nature of the cutting force expression can facilitate the planning, optimisation, monitoring, and control of milling operations with complicated tool—work interactions. Experiments were performed over various cutting conditions and results are presented, in verification of the model fidelity, in both the angle and frequency domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call