Abstract

This contribution presents a general approach for solving structural design problems formulated as a class of nonlinear constrained optimization problems. A Two-Phase approach based on Bayesian model updating is considered for obtaining the optimal designs. Phase I generates samples (designs) uniformly distributed over the feasible design space, while Phase II obtains a set of designs lying in the vicinity of the optimal solution set. The equivalent model updating problem is solved by the transitional Markov chain Monte Carlo method. The proposed constraint-handling approach is direct and does not require special constraint-handling techniques. The population-based stochastic optimization algorithm generates a set of nearly optimal solutions uniformly distributed over the vicinity of the optimal solution set. The set of optimal solutions provides valuable sensitivity information. In addition, the proposed scheme is a useful tool for exploration of complex feasible design spaces. The general approach is applied to an important class of problems. Specifically, reliability-based design optimization of structural dynamical systems under stochastic excitation. Numerical examples are presented to evaluate the effectiveness of the proposed design scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.