Abstract
This paper proposes a general framework of multi-armed bandit (MAB) processes by introducing a type of restrictions on the switches among arms evolving in continuous time. The Gittins index process is constructed for any single arm subject to the restrictions on switches and then the optimality of the corresponding Gittins index rule is established. The Gittins indices defined in this paper are consistent with the ones for MAB processes in continuous time, integer time, semi-Markovian setting as well as general discrete time setting, so that the new theory covers the classical models as special cases and also applies to many other situations that have not yet been touched in the literature. While the proof of the optimality of Gittins index policies benefits from ideas in the existing theory of MAB processes in continuous time, new techniques are introduced which drastically simplify the proof.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.