Abstract

Abstract We discuss the deformation of a curved interface between solid phases, assuming small strains in the bulk phases and neglecting accretion at the interfaces. Such assumptions are relevant to the deformation of solid microstructures when atomic diffusion and the formation of defects such as dislocations are negligible. We base our theory on a constitutive equation giving the (excess) free energy ψ of the interface when the interfacial limits of the displacement fields in the abutting phases as well as the limits of the displacement gradients are known. Using general considerations of frame invariance, we show that ψ can depend on these quantities at most through: firstly the normal and tangential components of the jump in displacement at the interface (stretch and slip), secondly the average of the projected strain in the tangent plane (average tangential strain), thirdly the tangential component of the jump in the projected displacement gradient at the interface (relative tangential strain and rel...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.