Abstract

We prove a general sufficient condition for local controllability of a nonlinear system at an equilibrium point. Earlier results of Brunovsky, Hermes, Jurdjevic, Crouch and Byrnes, Sussmann and Grossmann, are shown to be particular cases of this result. Also, a number of new sufficient conditions are obtained. All these results follow from one simple general principle, namely, that local controllability follows whenever brackets with certain symmetries can be “neutralized,” in a suitable way, by writing them as linear combinations of brackets of a lower degree. Both the class of symmetries and the definition of “degree” can be chosen to suit the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.