Abstract
In a top-k Geometric Intersection Query (top-k GIQ) problem, a set of n weighted, geometric objects in Rd is to be preprocessed into a compact data structure so that for any query geometric object, q, and integer k > 0, the k largest-weight objects intersected by q can be reported efficiently. While the top-k problem has been studied extensively for non-geometric problems (e.g., recommender systems), the geometric version has received little attention. This paper gives a general technique to solve any top-k GIQ problem efficiently. The technique relies only on the availability of an efficient solution for the underlying (non-top-k) GIQ problem, which is often the case. Using this, asymptotically efficient solutions are derived for several top-k GIQ problems, including top-k orthogonal and circular range search, point enclosure search, halfspace range search, etc. Implementations of some of these solutions, using practical data structures, show that they are quite efficient in practice. This paper also does a formal investigation of the hardness of the top-k GIQ problem, which reveals interesting connections between the top-k GIQ problem and the underlying (non-top-k) GIQ problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.