Abstract

A method for the synthesis of long chain fatty acids substituted at the ω and ω-1 positions has been developed. The key step is the isomerization of the triple bond of an alkyn-1-ol from an internal position in the chain to the free terminus with a new, convenient reagent, sodium aminopropylamide (NaAPA). Standard functional group manipulations i.e., Jones oxidation, esterification and hydroboration of the triple bond are used to prepare ω-hydroxy fatty esters. The generality of the method is illustrated with syntheses of ω-hydroxy fatty esters with 24, 26, 28 and 30 carbon chains. In the 24 carbon series, hydration of the terminal triple bond of alkynoic ester 4a followed by reduction gave the (ω-1)-hydroxy ester.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.