Abstract

Organic dye based NIR-II fluorescent probes, owing to their high signal-to-background ratio and deeper penetration, are highly useful for deep-tissue high-contrast imaging in vivo. However, it is still a challenge to design activatable NIR-II fluorescent probes. Here, a novel class of polymethine dyes (NIRII-RTs), with bright (quantum yield up to 2.03 %), stable, and anti-solvent quenching NIR-II emission, together with large Stokes shifts, was designed. Significantly, the novel NIR-II dyes NIRII-RT3 and NIRII-RT4, equipped with a carboxylic acid group, can serve as effective NIR-II platforms for the design of activatable bioimaging probes with high contrast. As a proof of concept, a series of target-activatable NIRII-RT probes (NIRII-RT-pH, NIRII-RT-ATP and NIRII-RT-Hg) for pH, adenosine triphosphate (ATP), and metal-ion detection, were synthesized. By applying the NIRII-RT probe, the real-time monitoring of drug-induced hepatotoxicity was realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call