Abstract

Synthesizing noble metallic nanoparticles (NPs) enclosed by high-index facets (HIFs) is challenged as it involves the tuning of growth kinetics, the selective adsorption of certain chemical species, and the epitaxial growth from HIF enclosed seeds. Herein, a simple and general strategy is reported by using dual reduction agents and dual capping agents to prepare Pt-based alloy NPs with HIFs, in which both glycine and poly(vinylpyrrolidone) serve as the reductants and capping agents. Due to the facilely tunable growth/nucleation rates and protecting abilities of the reductants and capping agents, Pt concave nanocube (CNC), binary Pt-Ni CNC, ternary Pt-Mn-Cu CNC, and Pt-Mn-Cu ramiform polyhedron alloy NPs terminated by HIFs as well as other NPs with well-defined morphologies such as Pt-Mn-Cu nanocube and Pt-Mn-Cu nanoflower are obtained with this approach. Owing to the high density of low-coordinated Pt sites (HIF structure) and the unique electronic effect of Pt-Mn-Cu ternary alloys, the as-prepared Pt-Mn-Cu NPs show enhanced catalytic activity toward methanol and formic acid electro-oxidation reactions with excellent stability. This work provides a promising methodology for designing and fabricating Pt-based alloy NPs as efficient fuel cell catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.