Abstract

Our main goal in the present work is to address an integro-differential model under localized viscoelastic and frictional effects arising in the Boltzmann theory of viscoelasticity. More precisely, we consider a general version in the history context of the pioneer localized viscoelastic problem approached by Cavalcanti and Oquendo (2003) in the null history scenario, and more recently by Cavalcanti et al. (2018) in the history framework. By means of a new observability inequality, we prove a general stability result to the model under a weaker assumption on the localized frictional damping and a slower condition on the decreasing memory kernel (of polynomial type) than the previously mentioned works. To achieve such stability results, we still work in a general setting by removing the assumption on complementary damping mechanisms and show, in some reasonable situations concerning the density coefficient, that the localized viscoelastic effect is enough to ensure the general stability (of polynomial type) to the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.