Abstract

Sequential estimation of the delay and Doppler parameters for sub-Nyquist radars by analog-to-information conversion (AIC) systems has received wide attention recently. However, the estimation methods reported are AIC-dependent and have poor performance for off-grid targets. This paper develops a general estimation scheme in the sense that it is applicable to all AICs regardless whether the targets are on or off the grids. The proposed scheme estimates the delay and Doppler parameters sequentially, in which the delay estimation is formulated into a beamspace direction-of- arrival problem and the Doppler estimation is translated into a line spectrum estimation problem. Then the well-known spatial and temporal spectrum estimation techniques are used to provide efficient and high-resolution estimates of the delay and Doppler parameters. In addition, sufficient conditions on the AIC to guarantee the successful estimation of off-grid targets are provided, while the existing conditions are mostly related to the on-grid targets. Theoretical analyses and numerical experiments show the effectiveness and the correctness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.