Abstract
The photoluminescence, electroluminescence, and electrochemiluminescence from nanocrystals (NCs) have been extensively exploited for both fundamental and applied investigation over two decades, while the understanding of chemiluminescence (CL) from NCs is still far from clear by now. Herein, a general route for triggering CL from NC luminophore is proposed by extensively exploiting the charge transfer between n-type NCs and oxidants. Oxidants, such as K2S2O8, H2O2, KMnO4, and NaClO, can chemically inject the hole onto the valence band (VB) of methionine-capped n-type AuNCs (Met@AuNCs) and enable the occurrence of efficient radiative-charge-recombination between the chemically injected exogenous VB hole and the pre-existed endogenous conduction band (CB) electron, which eventually results in single-color and defect-involved CL with the maximum emission wavelength around 824 nm. The CL of Met@AuNCs/oxidant is qualified for ultrasensitive CL immunoassay in a similar procedure to the biotin-avidin and magnetic separation involved commercial CL immunoassay and exhibits acceptable performance for linearly determining carcinoembryonic antigen from 50 pg/mL to 100 ng/mL with a limit of detection of 10 pg/mL (S/N = 3). This strategy provides a general route to develop nanoparticulate CL luminophores and might eventually enable CL multiplexing assay via extensively exploiting the CL of different wavebands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.