Abstract

Block compressed sensing (BCS) is a promising technology for image sampling and compression for resource-constrained applications, but it needs to balance the sampling rate and quantization bit-depth for a bit-rate constraint. In this paper, we summarize the commonly used CS quantization frameworks into a unified framework, and a new bit-rate model and a model of the optimal bit-depth are proposed for the unified CS framework. The proposed bit-rate model reveals the relationship between the bit-rate, sampling rate, and bit-depth based on the information entropy of generalized Gaussian distribution. The optimal bit-depth model can predict the optimal bit-depth of CS measurements at a given bit-rate. Then, we propose a general algorithm for choosing sampling rate and bit-depth based on the proposed models. Experimental results show that the proposed algorithm achieves near-optimal rate-distortion performance for the uniform quantization framework and predictive quantization framework in BCS.

Highlights

  • IntroductionCompressed sensing (CS) quantization frameworks into a unified framework, and a new bit-rate model and a model of the optimal bit-depth are proposed for the unified CS framework

  • We propose a bit-rate model and an optimal bit-depth model to avoid the high complexity of calculating rate-distortion cost

  • The proposed method is tested on some images for the differential pulse-code modulation (DPCM)-plus-scalar quantization (SQ) framework and uniform SQ framework, respectively

Read more

Summary

Introduction

CS quantization frameworks into a unified framework, and a new bit-rate model and a model of the optimal bit-depth are proposed for the unified CS framework. The proposed bit-rate model reveals the relationship between the bit-rate, sampling rate, and bit-depth based on the information entropy of generalized Gaussian distribution. The optimal bit-depth model can predict the optimal bit-depth of CS measurements at a given bit-rate. We propose a general algorithm for choosing sampling rate and bit-depth based on the proposed models.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call