Abstract

The numerical determination of dispersion relations in periodic materials via the finite element method is a difficult task in most standard codes. Here, we propose a novel technique which allows the computation of these band structures from local elemental subroutines in contrast with existing methods which impose Bloch boundary conditions on the global arrays. The proposed local approach is thus readily applicable to several physical contexts and space dimensionalities. Here we present the details of this element-based algorithm and provide verification results for three different kinematic assumptions applied to phononic crystals in a classical and a micropolar elastic medium. The paper also includes in the form of supplementary material, a fully-coded user subroutine and a test-problem to be used in a commercial finite element code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.