Abstract

Reducing neuronal size results in less membrane and therefore lower input conductance. Smaller neurons are thus more excitable, as seen in their responses to somatic current injections. However, the impact of a neuron's size and shape on its voltage responses to dendritic synaptic activation is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs in unbranched cables, showing that these are entirely independent of dendritic length. For a given synaptic density, neuronal responses depend only on the average dendritic diameter and intrinsic conductivity. This remains valid for a wide range of morphologies irrespective of their arborization complexity. Spiking models indicate that morphology-invariant numbers of spikes approximate the percentage of active synapses. In contrast to spike rate, spike times do depend on dendrite morphology. In summary, neuronal excitability in response to distributed synaptic inputs is largely unaffected by dendrite length or complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.