Abstract

The function of the RNA molecule depends on its three-dimensional (3D) structure. Therefore, understanding the role of the RNA molecule requires detailed knowledge of its 3D structure. Initially, this task was performed experimentally using X-ray crystallography and NMR spectroscopy, but this technique remains limited to small molecules and becomes more expensive for large molecules. For this reason, the number of RNA 3D structures in databases increases in a difficult way. In the other hand, the number of RNA sequences increases rapidly, due to the high development of the sequencing tools. In order to remedy this shortcoming, a number of computational methods have been developed based on different aspects, such as dynamic molecular fragments or pattern and the coarse-grained potentials to predict the RNA 3D structure. In this paper we give a general overview of these methods, their categories, their advantages and their drawbacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.