Abstract

The shape of a mechanically equilibrated dislocation line is of considerable interest in the study of plastic deformation of metals and alloys. A general numerical method for finding such configurations in arbitrary stress fields has been developed. Analogous to the finite-element method (FEM), a general dislocation line is approximated by a series of straight segments (elements) bounded by nodes. The equilibrium configuration is found by minimizing the system energy with respect to nodal positions using a Newton-Raphson procedure. This approach, termed the finite-segment method (FSM), confers several advantages relative to segment-based, explicit formulations. The utility, generality, and robustness of the FSM is demonstrated by analyzing the Orowan bypass mechanism and a model of dislocation generation and equilibration at misfitting particles. Energy differences from previous analytical methods based on simple loop shapes are significant, up to 80 pct. Explicit expressions for the coordinate transformations, energies, and forces required for numerical implementation are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.