Abstract

This study presents a unified model for the nonlocal response of nanobeams in buckling and postbuckling states. The formulation is suitable for the classical Euler–Bernoulli, first-order Timoshenko, and higher-order shear deformation beam theories. The small-scale effect is modeled according to the nonlocal elasticity theory of Eringen. The equations of equilibrium are obtained using the principle of virtual work. The stress resultants are developed taking into account the nonlocal effect. Analytical solutions for the critical buckling load and the amplitude of the static nonlinear response in the postbuckling state are obtained. It is found out that as the nonlocal parameter increases, the critical buckling load reduces and the amplitude of buckling increases. Numerical results showing variation of the critical buckling load and the amplitude of buckling with the nonlocal parameter and the length-to-height ratio for simply supported and clamped–clamped nanobeams are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.