Abstract

This paper presents a general nonlinear theory of elastic shells for large deflections and finite strains in reference to a certain natural state. By expanding the displacement components into power series in the coordinate θ3 normal to the undeformed middle surface of shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these expanded displacement components. Through the modified Hellinger-Reissner variational principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants. The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy to be an analytic function of the strain measures, general nonlinear constitutive equations are then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the geometrical and physical nonlinearities is established. The classical theories of shells are directly derivable from the present results by proper truncations of the series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.