Abstract

Objects of the same class often exhibit variation in shape. This shape variation has previously been modelled by means of point distribution models (PDMs) in which there is a linear relationship between a set of shape parameters and the positions of points on the shape. Here we present a new form of PDM, which uses a multilayer perceptron (MLP) to carry out nonlinear principal component analysis. We demonstrate that MLP-PDMs can model the shape variability in classes of object for which the linear model fails. We describe the use of MLP-PDMs in image search and present quantitative results for a practical application (face recognition), demonstrating the ability to locate image structures accurately starting from a very poor initial approximation to their pose and shape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call