Abstract
Iterative approaches to the nonlinear inverse transport problem are described, which give rise to the structure that best predicts a set of transport observations. Such methods are based on minimizing a global error functional measuring the discrepancy between predicted and observed transport data. Required for this minimization is the functional gradient (Frechet derivative) of the global error evaluated with respect to a set of unknown material parameters (specifying boundary locations, scattering cross sections, etc.) which are to be determined. It is shown how this functional gradient is obtained from numerical solutions to the forward and adjoint transport problems computed once per iteration. This approach is not only far more efficient, but also more accurate, than a finite-difference method for computing the gradient of the global error. The general technique can be applied to inverse-transport problems of all descriptions, provided only that solutions to the forward and adjoint problems can be found numerically. As an illustration, two inverse problems are treated: the reconstruction of an anisotropic scattering function in a one-dimensional homogeneous slab and the two-dimensional imaging of a spatially-varying scattering cross section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.