Abstract

The complex refractive index for low-loss materials is conventionally extracted by either approximate analytical formula or numerical iterative algorithm (such as Nelder-Mead and Newton-Raphson) based on the transmission-mode terahertz time domain spectroscopy (THz-TDS). A novel 4-layer neural network model is proposed to obtain optical parameters of low-loss materials with high accuracy in a wide range of parameters (frequency and thickness). Three materials (TPX, z-cut crystal quartz and 6H SiC) with different dispersions and thicknesses are used to validate the robustness of the general model. Without problems of proper initial values and non-convergence, the neural network method shows even smaller errors than the iterative algorithm. Once trained and tested, the proposed method owns both high accuracy and wide generality, which will find application in the multi-class object detection and high-precision characterization of THz materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call