Abstract

A general Monte Carlo program for the simulation of X-ray fluorescence (XRF) spectrometers is presented. The global layout of the program is discussed and the way in which variance reduction techniques have been employed to improve the efficiency of the code is described. For the case of polychromatic excitation in a direct excitation energy-dispersive (ED) XRF instrument, experimentally collected ED-XRF spectra are compared with simulated spectral distributions. Applications of the software in the field of quantitative analysis and thickness estimation of samples of intermediate thickness illustrate the potential of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call