Abstract

SummaryIn the previous study, a method to control chaos for switched dynamical systems with constant threshold value has been proposed. In this paper, we extend this method to the systems including a periodically moving threshold. The main control scheme is based on the pole placement; then, a small control perturbation added to the moving threshold value can stabilize an unstable periodic orbit embedded within a chaotic attractor. For an arbitrary periodic function of the threshold movement, we mathematically derive the variational equations, the state feedback parameters, and a control gain by composing a suitable Poincaré map. As examples, we illustrate control implementations for systems with thresholds whose movement waveforms are sinusoidal and sawtooth‐shape, and unstable one and two periodic orbits in each circuit are stabilized in numerical and circuit experiments. In these experiments, we confirm enough convergence of the control input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.