Abstract

Motivated by a recent study of Bao and Ullah (2007a) on finite sample properties of MLE in the pure SAR (spatial autoregressive) model, a general method for third-order bias and variance corrections on a nonlinear estimator is proposed based on stochastic expansion and bootstrap. Working with concentrated estimating equation simplifies greatly the high-order expansions for bias and variance; a simple bootstrap procedure overcomes a major difficulty in analytically evaluating expectations of various quantities in the expansions. The method is then studied in detail using a more general SAR model, with its effectiveness in correcting bias and improving inference fully demonstrated by extensive Monte Carlo experiments. Compared with the analytical approach, the proposed approach is much simpler and has a much wider applicability. The validity of the bootstrap procedure is formally established. The proposed method is then extended to the case of more than one nonlinear estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.