Abstract

Projective-lag synchronization of complex systems has attracted much attention in the past two decades. However, the majority of previous studies concentrated on continuous-time chaotic systems or discrete-time chaotic systems with the same dimensions. In our present study, a general method for projective-lag synchronization of different discrete-time chaotic systems characterized with different dimensions is first demonstrated. On the basis of stability theory of discrete-time dynamical systems and Lyapunov stability theory, general controllers are designed by using the active control method. The method could achieve projective-lag synchronization in both cases: and . The effectiveness and feasibility of the proposed method is demonstrated by the projective-lag synchronization between two-dimensional Lorenz discrete-time system and three-dimensional Stefanski map, as well as between the three-dimensional generalized Hénon map and the two-dimensional quadratic map, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call