Abstract

ABSTRACTWe develop an approach for solving one-sided optimal stopping problems in discrete time for general underlying Markov processes on the real line. The main idea is to transform the problem into an auxiliary problem for the ladder height variables. In case that the original problem has a one-sided solution and the auxiliary problem has a monotone structure, the corresponding myopic stopping time is optimal for the original problem as well. This elementary line of argument directly leads to a characterization of the optimal boundary in the original problem. The optimal threshold is given by the threshold of the myopic stopping time in the auxiliary problem. Supplying also a sufficient condition for our approach to work, we obtain solutions for many prominent examples in the literature, among others the problems of Novikov-Shiryaev, Shepp-Shiryaev, and the American put in option pricing under general conditions. As a further application we show that for underlying random walks (and Lévy processes in continuous time), general monotone and log-concave reward functions g lead to one-sided stopping problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.