Abstract
Drawdown risk is a major concern in financial markets. We develop a novel method to solve the first passage problem of the drawdown process for general one-dimensional Markov processes (including time-inhomogeneous ones) as well as regime-switching and stochastic volatility models. We compute its Laplace transform based on continuous-time Markov chain (CTMC) approximation and invert the Laplace transform numerically to obtain the first passage probabilities and the distribution of the maximum drawdown. We prove convergence of our method for general Markov models and provide sharp estimate of the convergence rate for a general class of jump-diffusion models. We apply our method to price and hedge maximum drawdown options and demonstrate its accuracy and efficiency through various numerical experiments. In addition, we can apply our method to calculate the Calmar ratio for investment analysis, and quantify the contributions of assets to the drawdown risk of a portfolio when the assets follow multivariate exponential LĂ©vy models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.