Abstract
Irregular topologies are desirable network structures for building scalable cluster systems and very recently they have also been employed in SoC (system-on-chip) design. Many analytical models have been proposed in the literature to evaluate the performance of networks with different topologies such as hypercube, torus, mesh, hypermesh, Cartesian product networks, star graph, and k-ary n-cube; however, to the best of our knowledge, no mathematical model has been presented for irregular networks. Therefore, as an effort to fill this gap, this paper presents a comprehensive mathematical model for fully adaptive routing in wormhole-switched irregular networks. Moreover, since our approach holds no assumption for the network topology, the proposed analytical model covers all the aforementioned models (i.e. it covers both regular and irregular topologies). Furthermore, the model makes no preliminary assumption about the deadlock-free routing algorithm applied to the network. Finally, besides the generality of the model regarding the topology and routing algorithm, our analysis shows that the analytical model exhibits high accuracy which enables it to be used for almost all topologies with all traffic loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.